1. (20%) Find the following limit. (If the limit does not exist, you should point it
out).

Hint: Change of variables may be useful here

(a)

x2y

(x,yl)lir(lo,O) x*+y?

lim Xz
(x,y,2)—(0,0,0) X2 +y?+22

(b)

1—cos(x2+y?
im 2( - y9)
(xy)—(0,0)  x°+Yy

(©
. x3+xy?
@ (x,yl)lg(lo,O) 4x2y=2y?

li xy
© (x,y)lgzo,o) Vx2+y?

Definition 13.1 (A function of two variables)

Let D be a set of ordered pairs of real numbers. If to each ordered pair
(x,y) in D there corresponds a unique real number f(x,y), then f is
called a function of x and y. The set D is the domain of f, and the
corresponding set of values for f(x, y) is the range of f.
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Surface: z = f(x, y)
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(b) Contour map of
? flx.y) =

/64 — x2 — y2.

Definition 13.2 (Limit of a function of two variables)

Domain: D

Let f be a function of two variables defined, except possible at (xp, yo), on
an open disk centered at (xp, yo), and let L be a real number. Then

lim fix,y)=1L
(x,¥)—(x0,¥0) (ey)

if for each & there corresponds a & > 0 such that

|f(x,y) — L| <& whenever 0 < \/(x —x0)2 + (v — y0)? < 0.




Definition 13.3 (Continuity of a function of two variables)

A function f of two variables is continuous at a point (xp, yp) in an open
region R if f(xp, yo) is equal to the limit of f(x, y) as (x, y) approaches
(%0, ¥0). That is,
lim f(x,y) = f(xo, yo)
(x.¥)—(x0.%0)
The function f is continuous in the open region R if it is continuous at
every point in R.

Finding a Limit Using Polar Coordinates In Exercises
51-56, use polar coordinates to find the limit. [Hint: Let
x = rcos and y = rsin 6, and note that (x, y) — (0, 0) implies
r—0.]

Finding a Limit Using Spherical Coordinates In
Exercises 77 and 78, use spherical coordinates to find the limit.
|Hint: Letx = psin ¢ cos 6, y = psin ¢ sin 6,and z = p cos ¢,
and note that (x, y, z) — (0, 0, 0) implies p —0%.]

Ans:

2 . x%y . kx* . k k .
(a) Let y = kx“, lim = lim = lim = which means that
x,y)—(0,0) x*+y? x50 x*+k2x* x50 1+k? 1+k?2
(x,¥)—(0,0)

if we follow the trajectory of different parabola y = kx? to approach (0,0) we
will get different value, therefore, the limit does not exist.
(b) Let x = psin(®)cos(0),y = p sin(®) sin(0),z = p cos(P)
lim xXyz _ 1 (psin(@)cos(0))(psin(®)sin(8))pcos(P)
(x,y,2)~(0,0,0) X2 + yz +z2  poot p2

= lir(r)1+ psin?(®)cos(8)sin(8)cos(®) = 0
p—

(¢c) Let x =rcos(8),y = sin(0)

1- 2 2 . 1- 2 . ) 1— 2
im —Coz(x :y ) = lim —Coz(r ), By L’Hospital’s Rule, llm%(r) =
(x,y)—(0,0) x“+y r—0 r >0 r
: 2
lim 22027 — fim sin(r?) =0
r—0 2r r—0

lim +xy? L. 1+m? 1+m?
(x,y)~(0,0) 4x?y=2y?

(d) Let y = mx, . which means that if we

xo04m-2m3  4m-2m3

follow the trajectory of different line y = mx to approach (0,0) we will get
different value, therefore, the limit does not exist.
(e) Let x =rcos(0),y = sin(6)
xy _ 12%cos(8)sin(0)

lim = lim = limr cos(0) sin(8) = 0.
(x,¥)—(0,0) /42 + yZ r—0 r r—0

2. (16%)



(a) Let f(x,y) = f; sin(t?)dt, evaluate f, and f,
(b) Let f(x,y) = xsin(y) + ye*?, find the four second partial derivatives
(c) Let z=f(x,y) =x>+y3x=s+t,y=s—t, find % and %

(d) Find an equation of the tangent plance of the surface 9x? + y? + 4z2 = 25 at
(0,-3,2)
Definition 13.5 (Partial derivatives of a function of two variables)

If z= f(x,y), then the first partial derivatives of f with respect to x and
y are the functions £, and f, defined by

. x4+ Ax,y) — f(x,y
i) = lm, S

Partial derivative with respect to x  and

. f(X,y+Ay)—f(X,y)
) i, L2 52

Partial derivative with respect to y , provided the limits exist.

@ Differentiate twice with respect to x:

o oy _or
Ox \dx ) ox2

@ Differentiate twice with respect to y:

o (oF_ o,
3}/ 8y _8y2_W'

© Differentiate first with respect to x and then with respect to y:

o (of\  O*f _¢
dy \dx ) dyox 7V

@ Differentiate first with respect to y and then with respect to x:
a (ofy\ O*f _f
dx \dy )  oxdy 7

Definition 13.6 (Total differential)

If z=f(x,y) and Ax and Ay are increments of x and y, then the
differentials of the independent variables x and y are

dx=Ax and dy=Ay

and the total differential of the dependent variable z is

dz = —dx+ - dy = fi(x,y) dx + f,(x,y) dy.
X y




Definition 13.7 (Differentiability)

A function f given by z = f(x, y) is differentiable at (xo, yo) if Az can be
written in the form

Az = f(x0, yo)Ax + f,(x0, Yo) Ay + e1Ax + e2Ay

where both ¢; and €2 — 0 as (Ax, Ay) — (0,0). The function f is
differentiable in a region R if it is differentiable at each point in R.

Theorem 13.4 (Sufficient condition for differentiability)

If f is a function of x and y, where f, and f, are continuous in an open
region R, then f is differentiable on R.

Theorem 13.5 (Differentiability implies continuity)

If a function of x and y is differentiable at (xg, vo), then it is continuous at
(%0, ¥0)-

Ans:
(a) Using the Fundamental theorem of calculus, D, f = sin(x*) and D, f =

D,(— f; sin(t?) dt) = —sin(y?)

(b) g_i = sin(y) + y*e™, Z_£ = xcos(y) + ™ + xye™ = xcos(y) + (1 + xy)e™

aZf 62f

9T _ 3%y

axz 7 ¢ ox dy
= cos(y) + (2y + xy?)e™”

= cos(y) + 2ye™ + y(1 + xy)e™

62
3y 6fx = cos(y) + 2ye™ + xy?e™ = cos(y) + (2y + xy?)e™

62
a—y]; = —xsin(y) + xe™ + x(1 + xy)e™ = —xsin(y) + 2x + x%y)e™¥

Theorem 13.8 (Chain Rule: implicit differentiation)

If the equation F(x,y) = 0 defines y implicitly as a differentiable function
of x, then
dy  FRd{xy)
dx Fy(x.y)’

Fy(XaY) ‘_/'é 0

If the equation F(x,y,z) = 0 defines z implicitly as a differentiable
function of x and y, then

dz _Fx(x,y,z) and 0z _Fy(x,y,z)

ox  Fx,y.z) dy  FAx,y.z) Falx,y,2) #0.




Theorem 13.7 (Chain Rule: two independent variables)

Let w = f(x,y), where f is a differentiable function of x and y. If
x = g(s,t) and y = h(s, t) such that the first partial g—’s‘, %, %%, and %%

all exist, then %—‘;’ and %—‘f exist and are given by

ow_owox owdy | ow_owdx owdy
ds  Ox ds  dy Os dt  Ox It Oy Ot

(c) Using chain rule

oz _ofox  ofdy _ .., 1 = —t) =
&‘axas+ayas_2x 1+2y-1=2(s+t)+2(s—t)=4s

dz o0fox ofdy
a—&a'Fa—ya—ZX'l-Fzy'(—l)—2(S+t)—2(s—t)—4t

Definition 13.9 (Gradient of a function of two variables)

Let z = f(x,y) be a function of x and y such that £, and f, exist. Then
the gradient of f, denoted by Vf(x, y), is the vector

Vf(x,y) = fX(X:y)i+ @(X7Y)j

Vf is read as "del f". Another notation for the gradient is grad f(x, y).
In Figure 32, note that for each (x,y), the gradient Vf(x,y) is a vector in

the plane (not a vector in space).
4

Definition 13.11 (Tangent plane and normal line)

Let F be differentiable at the point P(xg, yo, Zp) on the surface S given by
F(x,y,z) = 0 such that VF(xo, y0,20) # 0.
1. The plane through P that is normal to V F(xo, yo, z0) is called the
tangent plane to S at P.
2. The line through P having the direction of VF(xo, yo, zo0) is called the
normal line to S at P. )

Theorem 13.13 (Equation of tangent plane)

If F is differentiable at (xo, yo,Z0), then an equation of the tangent plane
to the surface given by F(x,y,z) =0 at (xo, Yo, 20) is

F«(x0, Y0, 20)(x — x0) + Fy(x0, 0, 20)(y — y0) + Fz(x0, 0, 20)(z — 20) = 0.

v

T — Iy _ Y — Yo _ 22
Fy(xzo,90,20)  Fy(wo,v0.20)  F:(wo,y0,20)

Normal line:
(d)VF = 18xi + 2yj + 8zk, VF(0,—3,2) = —6j + 16k

Tangent plane:
0x—0)—6(y+3)+16(z—2)=0->—-3y+8z=25




2 2 -
(6%) Let f(x,y) =2022 — x: - y?, express the limit ltir{)l f(1+2t'2+tt) AR

the directional derivative of f and evaluate the value of the limit.

Definition 13.8 (Directional derivative)

Let f be a function of two variables x and y and let u = cosfi +sinfj be
a unit vector. Then the directional derivative of f in the direction of u,
denoted by Dyf, is

f(x+ tcosf,y + tsinf) — f(x,y)
t

Dyf(x,y) = tll_%

provided this limit exists.

Theorem 13.9 (Directional derivative)

If f is a differentiable function of x and y, then the directional derivative
of f in the direction of the unit vector u = cosfi+sinfj is

Duf(x,y) = fi(x,y) cosf + f,(x, y)sin 6.

Theorem 13.10 (Alternative form of the directional derivative)

If f is a differentiable function of x and y, then the directional derivative
of f in the direction of the unit vector u is

Dyf(x,y) = Vf(x,y) - u.

Theorem 13.11 (Properties of the gradient)

Let f be differentiable at the point (x,y).
1. IfVf(x,y) =0, then Dyf(x,y) = 0 for all u.

2. The direction of maximum increase of f is given by Vf(x,y). The
maximum value of Dyf(x,y) is ||[Vf(x,y)|l.

3. The direction of minimum increase of f is given by —Vf(x,y). The
minimum value of Dyf(x,y) is — ||V f(x,y)|.

Theorem 13.12 (Gradient is normal to level curves)

If f is differentiable at (xo, yo) and Vf(xo, yo) # 0, then Vf(xo, ) is
normal to the level curve through (xo, yo)-

Intersection of two surfaces.



Ans:

f(1+2t,2+t)—f(1,2) _
t

First of all, let (u,v) = (2,1)/ V5 and rewrite the limit as ltir%l

lting f(1+\/§tu,2+t\/§tv)—f(1,2) _ \/gltin(} f(1+\/§tu,2\-}-§\{c§tv)—f(1,2). Let t' = v/Bt

Which can be expressed as \/gtl,lrr}) rase u'2+f V)= _ \/g(D(u,v)f)(l,Z)

t

—-X 1 -1
Dawf = Vf - (W) = (57,-7) @D == (+)

Finally, we have V5(D(.)f)(1,2) = —(1+2) = -3

4. (8%) Find the critical points of f(x,y) = x3 + y? — 2xy + 7x — 8y + 2. Which

of them give rise to maximum values, minimum values and saddle points?

Definition 13.13 (Critical point)
Let f be defined on an open region R containing (xo, ¥o). The point
(x0, Yo) is a critical point of f if one of the following is true.

1. f;((XO!.YO) =0 and ﬂ/(XOLVO) =)
2. fi(xo0,y0) or f,(xo, yo) does not exist.

Theorem 13.16 (Relative extrema occur only at critical points)

If f has a relative extremum at (xp, yo) on an open region R, then (xo, yo)
is a critical point of f.

Theorem 13.17 (Second Partials Test)

Let f have continuous second partial derivatives on an open region
containing a point (a, b) for which

f(a,b) =0 and f,(a, b)=0.

To test for relative extrema of f, consider the quantity

d= fXX(av b)f:VY(a! b) - [fx}’(as b)]2
1. Ifd > 0 and fix(a,b) > 0, then f has a relative minimum at (a, b).
2. Ifd > 0 and f(a, b) < 0, then f has a relative maximum at (a, b).
3. Ifd <0, then (a,b, f(a, b)) is a saddle point.

4. The test is inconclusive if d = 0. )

Ans: f, =3x*—2y+7,f, =2y —2x—8.Let f, =0 and f, = 0, we have

the critical points (_?1,%) ,(1,5). Furthermore, since fiy = 6X, firy = fyx =

=2, fyy = 2. Wehave d = fi f,y — fayfyx = 12x — 4. Therefore, d (_?1,%)<0,



d(1,5) > 0. Finally, we know that (1,5) is absolute minimum point since
fx(1,5) > 0 and (_?1,%) is saddle point.

5. (6%) Find the minimum and maximum distance from the curve x? + xy + y? =
1 to the origin point (0,0).

Theorem 13.18 (Lagrange's Theorem)

Let f and g have continuous first partial derivatives such that f has an
extremum at a point (xp, yo) on the smooth constraint curve g(x,y) = c.
If Vg(xo0,y0) # 0, then there is a real number \ such that

Vif(xo, ¥0) = AVg(x0, y0)-

.

For optimization problems involving two constraint functions g and h, you
can introduce a second Lagrange multiplier, ;1 (the lowercase Greek letter
mu), and then solve the equation

Vf =AVg+ uVh

Ans:

The objective function can be change from /x2 + y2 to x? + y2. Use the
Langrange multiplier, we have the following equations

2x = A(2x +y)

2y = A(x + 2y)

2+xy+y?=1
Cross product the first and second equation yields
2xA(x + 2y) = 2yA(2x + y)
If =0, wehave x =y = 0 which does not satisfy the third equation. If 1 #
0. We have
x% + 2xy = 2xy + y?

Which means x = ty
If x =y, from the third equation, we have 3y? = 1, therefore (x,y) =

V3 | VB . . 2
(= R ?). The distance is therefore /x? + y? = \/;

If x = —y, from the third equation, we have y? = 1, therefore (x,y) =
(£1, ¥1). The distance is therefore \/x2 + y2 =+/2

. . .. . 2
Finally, we know that the maximum and minimum distance are V2 and \/;,

respectively.



6. (20%) Evaluate the following expression

@ [, [, =2 dxdy

(b) f f sm(w/x2 + y2) dydx
(c) fog flz x%sin(y) dxdy
@ i [ [ ydzdxdy

© [ [ e® ¥ dudu

Iterated integrals

ha(y) ¢ _
D Juiy 6o dx =y | =

f(ha(y),v) — f(h1(y),y) With respect to x

gz(x) lv— f gE(X):
fg (x (X,_y)(y (Xv_V) gl(x)

f(x,g2(x)) — f(x,g1(x)) With respect to y

Region is bounded by

Region is bounded by c<y<dand
as<x<band .'IL(_\.] <x<h,(y)
y g <y<g,W )

. - X
a b

1 2
b g -
Area = f j © dvidx; d [y ;
a Jgm ~= Area= S dxidy,
c h][n ~

(a) Vertically simple

b) Horizontally simpl
region. (b) Horizontally simple

region.

Definition 14.1 (Area of a region in the plane)

1. If R is defined by a < x < b and g1(x) < y < ga(x), where g1 and g»
are continuous on [a, b], then the area of R is given by

£2(x)
f f dy dx. Figure 2(a) (vertically simple)
&1(

2. If Ris defined by ¢ < y < d and hy(y) < x < ha(y), where h; and h
are continuous on [c, d], then the area of R is given by

ha(y)
/ f dxdy. Figure 2(b) (horizontally simple)
h

1(y)




Definition 14.2 (Double integral)
If f defined on a closed, bounded region R in the xy-plane, then the
double integral of f over R is given by

n

]/R F(x,y)dA = |\Ai\|nl>oz F(xi, yi)AA;

i=1

provided the limit exists. If the limit exists, then f is integrable over R.

Volume of a solid region If f is integrable over a plane region R and
f(x,y) > 0 for all (x,y) in R, then the volume of the solid region that
lies above R and below the graph of f defined as

V- /fR F(x,y) dA.

Definition 14.5 (Triple integral)

If £ is continuous over a bounded solid region @, then the triple integral of
f over @ is defined as

n

f(x,y,z)dV = lim f(x;,vi,zi)AV;
JI floor ey = im 3202

1

provided the limit exists. The volume of the solid region @ is given by

Volume of Q@ = /]/ dVv.
Q

Theorem 14.2 (Fubini's Theorem)

Let f be continuous on a plane region R.

@ IfR is defined by a < x < b and g1(x) < y < go(x), where g1 and g
are continuous on [a, b|, then

b re(x)
ff f(x,y)dAzf ] f(x,y)dydx.
R a Jgi(x)

@ IfR is defined by ¢ <y < d and hy(y) < x < ha(y), where hy and h;
are continuous on [c,d], then

d prha(y)
ff f(x,y)dAzf / f(x,y)dxdy.
R c Jhi(y)

Theorem 14.4 (Evaluation by iterated integrals)

Let f be continuous on a solid region @ defined by
a<x<h h(x)<y<h(x), gilxy)<z<glxy)

where h1, ha, g1, and g» are continuous functions. Then,

b rha(x) rg2(x.y)
/f[ f(x,y,z)dV:f / f(x,y,z)dzdydx.
Q a Jh(x) Jealxy)




Ans:

. _ ) x
(@) fol fyl sin(x) dxdy = fol foxsn;ﬁdydx _ fl [y sm(x)]0 dx = f01 sin(x) dx = 1 —

x 0 x
cos(1)

Theorem 14.3 (Change of variables to polar form)

Let R be a plane region consisting of all points (x,y) = (rcos#, rsin@)
satisfying the conditions 0 < g1(#) < r < g2(0), o < 6 < 3, where
0<(8—a)<2nm. Ifg and g are continuous on [a, 5] and f is
continuous on R, then

8 re(8)
ff f(x,y)dA = f / f(rcos, rsin@)rdrdf.
R a Jg(0)

b R={xyo<r<20<sy<vi-x}={ro<r<20<o<

v

foz Jy At sin(y/x2 + y2) dydx = JZ foz sin(r)rdrdd (Let r =u,sin(r) = dv -

dr = du, — cos(r) = v) and use integration by parts, we have
Y Y

= J-E[sin(r) —rcos(r)]3do = jisin(Z) — 2cos(2)do = g(sin(Z) — 2cos(2))
0 0

© f(? f12 x2sin(y) dxdy = (fogsin(y)dy) X (f12 dex) = [—cos(y)]; X [%3]? =3

1,1 1 1 1 -1
(d) fO fO +Wf0xydedxdy = fo fo +W[yz]i)cy dXdy = fo fO +\/7Xy2 dXd_’y =

111 1+/y 11 1,1 5

L Ex?| T ay = f s+ PRy =3 [ [y? + 2y7 + y¥ldy =
1y 4 2 1 97

2[3+7y2+4y ]0_168

Definition 14.6 (Jacobian)

If x=g(u,v) and y = h(u, v), then the Jacobian of x and y with respect
to v and v, denoted by d(x, y)/d(u,v), is

8(x,y)_§—u §—": _Ox dy dy Ox
MNu,v) |5 F| Oudv  dudv

Theorem 14.5 (Change of variables for double integrals)

Let R be a vertically or horizontally simple region in the xy-plane, and let
S be a vertically or horizontally simple region in the uv-plane. Let T from
S to R be given by T(u,v) = (x,y¥) = (g(u, v), h(u. v)), where g and h
have continuous first partial derivatives. Assume that T is one-to-one
except possibly on the boundary of S. If f is continuous on R, and
d(x,y)/0(u,v) is nonzero on S, then

/fR F(x,y)dxdy:]]s f(g(u, v), h(u. v))‘ggzi;‘ dudv.




e)x=v—-—u+l,y=u->v=x+y—-1Lu=y
Jdu Ju
d(w,v) |0x Ody

= =1
o(x,y) |9v Ov
dx Ody
v=u->x=lLv=2u—-2-x=y—-1

2 ru
f f e(v-ut1)* dvdu=f f X dxdy = f J e** dydx
1 J2u-2 1 Jy-1

1
xz x+1 xz
=f[ye ]1 dxzfxe dx=—(e—1)
0 0 2

7. (6%) Find the area of the surface given by z = f(x,y) = 9 — y? that lies above
the region R where R is a triagle with vertices (-3,3),(0,0),(3,3)
Definition 14.4 (Surface area)
If f and its partial derivatives are continuous on the closed region R in the

xy-plane, then the area of the surface S given by z = f(x, y) over R is
defined as

Surface area = f/’; dS = /]R \/1 + [f (6 )P + [F,(x, ¥))P dA.

Ans:
fx = O,fy = —

Jl F R+ (f)? =T+ 42

3y 3 3

S = j J V1+4y?dxdy = J [w/l + 4y2x]y dy = f 2y\/4y? + 1dy
0 v-y - 0

37\/_ 1

= [y +1)]

8. (6%) Find the volume of the solid inside both x? + y2? + z2 = 36 and



(x—3)2%+y?=9

Cylindrical coordinates:

T 2oylay?
Rectangular ¥
coordinates: tan 8 = T
x=rcos@ =z
y=rsinf
=3 (X ¥, 2)

P62
1

/ff f(x,y,z)dV

02 prg2(0) pho(rcos@,rsind)
/ f / f(rcos@,rsinf, z)rdzdrdf
1(0)  hi(rcosf,rsin6)

Ans:
Note that (x — 3)? + y? =9 is equivalentto r = 6cos(f), 0 <0<

m r~6cos(f) V36—r2 1 ~6cos(0)
V= Zf f f rdzdrdf = ZJ f /36 — r2drdf
0 YO0
6cos(6)

3
- zf —(36 - r2)z] do
- ?j (216sin*0 — 216) d6
0

s
= —144f [(1 — cos?0)sing — 1]dO
0

cos36

3

= —144 I— cos(0) + — 9] =48(3m—4)
0

. (6%) Evaluate [ [ f ————dV where Q is asolid region inside the sphere

o T
x% + y? +z? =9 and above xy-plane.

r=psin o= vx?+y?
& p; sing; A6,

Spherical coordinates



f/fo f(x,y,z)dV

B2 pd2 pp2
Z/ [ / f(psin ¢ cosd, psin ¢sin b, pcos ¢)p? sin & dp dg df
th Jor Im

Ans:

27 7 3 peos(P
v = f f : f POS(®) 2 in(@)dpdddd
o Jo Jo p

fff ,/
Q x2+y2+zz
3 127

2T L
= j de jzsin(tp)cos(¢)d¢J ptdp =2n-— =91
0 0 0 23

10. (6%) Use a change of variables to find the volume of the solid region lying below

x
1+x2y2

the surface z = f(x,y) = and above the plane region R wher R isa

region bounded by xy =5,xy =1,x =1,x = 5.
Ans:

v
Letu=x,v=xy—>x=u,y=;

dx,y) 0xdy o0xdy 1

d(u,v) oudv ovou u

ff ~ a4
r 1+ x2%y?
5 r5 u 1dd 5 r5 1 dud
_J1 J1 1+u2(v/u)?u “ v—Jl Jl 1402 %

5
4
— _ 5
_jl T2 dv = 4arctan(v) | = 4arctan(5) —




